Research

Basic Scientific Research

We are living in the 21st century: The Earth is a sphere and has long shifted out of the centre of our solar system. Our solar system is also just one among many. It seems the big questions of the origin of the world and of mankind have been answered. However, new questions arise behind each answer: Why does the universe expand increasingly rapidly? What are the smallest parts constituting everything? Basic research in the natural sciences investigates these and other questions.

Due to Germany's federal structure, supporting basic research is, first and foremost, a task of the Federal States ("Länder"). However, institutions and projects of basic scientific research which are of national importance are co-financed by the Federal Government.

A particular priority of the BMBF in the area of basic scientific research is the so-called collaborative research ("Verbundforschung"). Here, excellent research groups, primarily at universities, collaborate with the outstanding experimental facilities at national and international research centres.

The content of collaborative research is focused on physical studies for which use of expensive large-scale equipment is indispensable: astrophysicists overcome dimensions of space and time in outer space by means of large-scale telescopes, and particle physicists study the smallest elements of matter in large-scale accelerator facilities.

One important priority is the study of matter surrounding us in all its many forms. In the past, such investigations at large-scale research facilities made possible unique, trail-blazing progress in the fields of biosciences or materials research. Further results and impacts on many areas of our everyday life, with implications which can hardly be estimated today, can be expected from the new large-scale research equipment supported by the BMBF.
Collaborative research and the BMBF's funding activities in basic research in the natural sciences have strong interdisciplinary features. The current areas of funding in collaborative research are presented in the following chapters:

  • Astrophysics
  • Astro-particle physics
  • Hadron and nuclear physics
  • Structure and interaction of fundamental particles
  • Physics of condensed matter

An overview of the research results obtained in these fields is presented on the Internet portal www.weltderphysik.de. More information about the area of physics and some related disciplines are offered in addition to numerous articles on different topics.

  • Research

    High-energy physics: What holds the core of the universe together

    Four fundamental forces keep the smallest known particles "on the move." How they do this and which interactions exist between elementary components is the focus of particle physics. Researchers use multiple accelerator facilities where particles are accelerated to very high energy levels, which is why this field is often referred to as "high-energy physics." Highly sensitive measuring devices are built by physicists at the particle accelerators - and with several million individual sensors each, these "detectors" often have huge dimensions.
    more (URL: http://www.bmbf.de/en/1431.php)
  • Research

    The new FAIR international research centre

    A new particle accelerator facility is being built next to the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt. It will enable some of the most unique experiments in the world. Physicists hope that the FAIR international research centre (Facility for Antiproton and Ion Research) will provide new insight into the structure of matter and the development of the universe.
    more (URL: http://www.bmbf.de/en/6553.php)
  • Research

    European XFEL - the European X-Ray Laser Project

    The European XFEL X-ray laser will open up new applications for research. Its very high-energy, short-wave X-ray light will provide previously unknown insights. The facility will make it possible to film molecules during chemical reactions or to depict molecules which in the past were too small for imaging techniques or which could not be fixed. In the field of physics, it will enable the study of the material state of a gas plasma.
    more (URL: http://www.bmbf.de/en/4374.php)
  • Research

    Hadrons and Nuclear Physics

    Over 99.9% of the mass of matter is concentrated in the cores of atoms. As far as we know today, there are less than 300 cores of atoms which are stable, i.e. which are not subject to decay processes. This makes them decisive elements for the structure of our world. These stable elements are created in reactions between cores of atoms within stars that provide the energy which enables our life in the first place and are the cause for the development of chemical elements.
    more (URL: http://www.bmbf.de/en/468.php)
  • Research

    Astrophysics

    If we want to see what Aristotle saw, we should look at the stars. Galileo's telescope, Kepler's laws and Newton's theory of gravitation are important milestones developed since Aristotle's work on astronomy which help us understand the universe more and more. Discoveries in recent years in particular have broadened our understanding of the cosmos to an unexpected extent.
    more (URL: http://www.bmbf.de/en/101.php)
  • Research

    Astroparticle physics

    In recent years, astronomy and particle physics have increasingly moved closer together. The exciting question of the evolution of our universe leads back to its origins - the Big Bang. Studying the generation and structure of matter with methods and findings from elementary particle physics is to provide an insight into how the very big is related to the very small. "If the whole is ever to gladden thee, that whole in the smallest thing thou must see.", as Johann Wolfgang von Goethe said.
    more (URL: http://www.bmbf.de/en/717.php)
  • Research

    Condensed Matter

    Painters and photographers depict the outer aspect of objects. In the past, objects had to be destroyed or taken apart in order to look inside them. Since Konrad Röntgen, we cannot only look inside the living person but we can also look through matter. Today, we are able to penetrate into the inside of many states of matter; and soon we will even be able to observe atoms during chemical reactions.
    more (URL: http://www.bmbf.de/en/654.php)

Deutsche Version dieser Seite
(URL: http://www.bmbf.de/de/713.php)

Contact Persons

  • Deutsches Elektronen-Synchrotron DESY

    • Projektträger DESY (PT-DESY)
    • Notkestraße 85
    • 22607 Hamburg
    • Telefonnummer: +49 40 8998-3702
    • Faxnummer: +49 40 8994-3702
    • E-Mail-Adresse: pt@desy.de
    • Homepage: http://pt.desy.de
    • Geförderte Vorhaben: http://foerderportal.bund.de/foekat/foekat/foekatliste$v_foekat_webliste.actionquery?P_APC_LFDVOR=J&P_APC_RESSORT=BMBF&P_APC_PT=PT-DESY&Z_CHK=0
  • Gesellschaft für Schwerionenforschung mbH (GSI)

    • - PT Hadronen- und Kernphysik -
    • Planckstraße 1
    • 64291 Darmstadt
    • Telefonnummer: 06159/71-2628
    • Faxnummer: 06159/71-2983
    • E-Mail-Adresse: gsi-pt@gsi.de
    • Homepage: http://www.gsi.de/gsi-pt
    • Funded projects: http://oas2.ip.kp.dlr.de/foekat/foekat/foekatliste$v_foekat_webliste.actionquery?P_APC_LFDVOR=J&P_APC_RESSORT=BMBF&P_APC_PT=PT-GSI&Z_CHK=0
  • Forschungszentrum Jülich GmbH

    • Projektträger Jülich (PtJ) Leitung - Sekretariat
    • 52425 Jülich
    • Telefonnummer: +49 2461 61-4622
    • Faxnummer: +49 2461 61-6999
    • E-Mail-Adresse: i.schumacher@fz-juelich.de
    • Homepage: http://www.fz-juelich.de/ptj
    • Geförderte Vorhaben: http://foerderportal.bund.de/foekat/foekat/foekatliste$v_foekat_webliste.actionquery?P_APC_LFDVOR=J&P_APC_RESSORT=BMBF&P_APC_PT=PT-J&Z_CHK=0